专家点津:多核处理器将如何改变电源管理?
电子发烧友网12月“处理器与DSP特刊”火热下载中,缺你怎可!
随着消费者不断要求智能手机、平板电脑、PC 等设备增加新功能和提高性能,多核处理器从此取代了传统的单核设备。
各大厂商最新推出的多媒体应用处理器采用了ARM Cortex-A9 或 Cortex-A15 等先进的内核架构,提供单核、双核和四核等性能各异的版本。
ARM的不对称 big.LITTLE 系统进一步发展了多核理念,通过结合使用一个高性能的内核(如Cortex-A15)和一个能效极高、采用相同架构的内核(如Cortex-A7),优化所有处理负荷的能效。
最新的多核应用处理器还集成了 DRAM控制器、ARM Neon媒体/图形协处理器等外围设备,以进一步提升性能。
电源管理的演进
当双核处理器于 2011 年进入市场时,单核设备通常使用的电源架构只经过了简单的扩展,以便通过通用供电轨为两个处理器内核供电。随着多核路线图的不断演进和四核处理器的问世,并考虑到正处于研发阶段的八核处理器以及更加复杂的未来处理器,我们需要能够异常灵活地控制各个内核的供电电源,从而实现优化能效的目标。这需要异常复杂的电源管理架构,将每个内核单独划分到由一个稳压器供电的各自的电源域中(见图1)。这种方法能够使用较小的稳压器,降低最坏情况下的电流需求。
图 1:将内核划分到不同的电源域中可实现灵活高效的电源管理。
推动多核系统电源架构发生改变的另一重要因素是40纳米、32纳米以及最近的28纳米工艺的普及。 它们无法支持连接各个稳压器输入端的5V电池电压(VBAT),因为更小的CMOS需要更低的工作电压,从而有效减少了所能施加的最大电压。鉴于此,现在有必要将应用处理器的电源管理功能迁移到一个单独的器件上。
这与第一代移动设备中所采用的方法形成了鲜明对比,后者通常将电源管理功能整合到应用处理器中,形成一个芯片。
在芯片之外的一个单独器件上实现一个更加复杂的多稳压器架构,这一趋势正在催生新一代先进的电源管理集成电路(PMIC)。
这些PMIC的特性和能力正在不断演进,目的是提升当今消费类移动和多媒体产品中多种使用模式的能效。通常可以实现多个开关式稳压器,其中包括为处理器内核和I/O(对于28纳米处理器,它们可分别低至 1和2 V)、内存IC和其它外围设备提供低电压的降压稳压器。还可以实现一个升压转换器,为屏幕背光等LED灯串供电。此外,内置的低压差(LDO)稳压器还可用于为感应器、LED 指示灯或电机等子系统供电。
各种电池充电功能也能得以实现,从用于为备用纽扣电池或超级电容器充电的几毫安小型电源,到能够连接墙壁充电器、USB 5-V 电源或车载充电器等各种电源的数控多模式锂电池充电器。
此外,还可以实现用于监视外部电压和温度的数模转换器等更多功能。不仅如此,片上电源监控智能还能让PMIC处理开机/关机顺序、重置和中断处理等重要功能。这可以帮助设计人员提升系统的整体可靠性和能效。